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Abstract

For the deceptively innocent case of monomolecular reactions, only, we
embark on a systematic mathematical analysis of the steady state response
to perturbations of reaction rates. Our structural sensitivity analysis is
based on the directed graph structure of the monomolecular reaction net-
work, only. In fact, our function-free approach does not require numerical
input. We work with general, not necessarily monotone reaction rate func-
tions. Based on the graph structure alone, we derive which steady state
concentrations and reaction fluxes are sensitive to, and thus affected by,
a rate change – and which are not. Moreover, we establish a transitivity
property for the influence of a rate perturbation, at any reaction, on all
reaction fluxes. The results and concepts developed here, from a mathe-
matical view point, are of applied relevance including metabolic networks
in biology; see our companion paper [MoFi14].
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1 Introduction

We study the response sensitivity of steady states to perturbations of reaction
rates in chemical reaction networks. Strong motivation for our study comes from
recent advances of experimental techniques in systems biology of metabolic net-
works. In our complementary companion paper [MoFi14], for example, we ad-
dress the steady state response of the tricarboxylic citric acid cycle (TCAC) in
the glycolytic carbon metabolism of E. coli bacteria. Perturbations are effected,
experimentally, by changing the levels of enzymes which selectively catalyze the
various reactions in the network; see [Ishetal07]. Based on computer algebra we
have calculated symbolic response matrices, in [MoFi14]. We obtained partial
conclusions on the increase, decrease, or zero change of steady state concentra-
tions and reaction flux rates. We also observed a transitivity property of the
flux response in several specific examples. Notably our results were based on the
reaction network structure, only, together with mild positivity and monotonicity
conditions on the reaction rates. In that sense our results were function-free.

In the present paper, we offer a first step towards a mathematical understand-
ing of the observations in [MoFi14]. Specifically we show how to predict zero
versus nonzero flux changes Φj′j∗ of reaction j′, as a result of a rate increase of
reaction j∗. Our prediction is based on the reaction network structure only; see
theorem 1.1 below. We say that j∗ influences j′, in symbols j∗ ; j′, if Φj′j∗ 6= 0.
In theorem 1.2 we show that the relation ; is transitive, indeed, as was first
observed in the examples of [MoFi14]. In theorem 1.3 we draw conclusions on
the changes δxm of steady state concentrations xm, for the metabolite m, from
the flux changes Φj′j∗ of theorem 1.1. This is of practical relevance because ex-
periments are not able to measure the flux response, usually, but determine the
concentration response to rate perturbations. Because our mathematical analysis
will be based on the stoichiometric graph structure of the metabolic or chemical
reaction network, only, we call our approach a structural sensitivity analysis.

At present, our mathematical results can only be called a first step because they
are limited to monomolecular reactions: any reaction j just converts one metabo-
lite mj into another one, mj; see our assumption (1.1) below. This is a severe
restriction which, for example, excludes the TCAC cycle. Nonetheless we find it
worthwhile to diligently settle the monomolecular case, which is less intuitive than
it might appear at first sight, before jumping to general conclusions prematurely.

Our mathematical setting and notation is as follows. A monomolecular reaction
network is a directed graph Γ with vertex set M ∪ {0} and directed edges (alias
arrows) j ∈ E. We call m ∈M metabolites or reactants. Their total number is M ,
and they are distinct from the zero-complex 0 introduced by Feinberg; see [Fe95]
and the references there. The E distinct arrows j ∈ E are also called reactions

(1.1) j : mj → mj
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from mj ∈M ∪ {0} to a different mj ∈M ∪ {0}. Feed reactions j have mj = 0,
and exit reactions have mj = 0. Any ordered pair (m, m) is connected by at most
one arrow. Self-loops m = m are forbidden, but reverse arrows from m to m 6= m
are allowed. A reaction j: m → m is called reversible if the reverse reaction j:
m→ m also occurs in Γ.

In chemistry the reactant mj is called an educt and mj is a product of reaction j.
Although monomolecular reactions are usually allowed to yield several products,
in chemistry, we are only able to deal with single products in the present paper.
Our graph representation of chemical networks therefore coincides with the graphs
on reaction complexes of [Fe95]. In fact the monomolecular reactions which we
consider are a special case of the deficiency zero networks studied in [Fe95], as we
will see in section 2. We do not restrict attention to mass action kinetics, though,
and allow for rather general reaction rate functions.

A path in a directed graph Γ is any succession of vertices and edges, without
any self-intersection. Unless stated otherwise, all paths are considered to be
directed, i.e. they follow edges by their arrow orientation. We speak of a di-
path to emphasize direction. An undirected path where the two end points, only,
coincide is called a cycle. If the cycle is directed we speak of a di-cycle. A bi-cycle
is a (non-oriented) cycle which decomposes into two parallel di-path arcs, each
with at least one edge. The arcs are required to be disjoint, except for their
shared start and termination vertices. Section 4 contains a detailed analysis of
the role of cyclicity for flux influence.

Deviating from standard terminology, we call the tail or educt mj of the arrow j
in (1.1) the mother metabolite of reaction j. Thus we have a map

(1.2) m : E→M ∪ {0}

such that m(j) = mj is the mother of j. The reaction products mj are obtained
by a map m(j):= mj. The feed reactions j are the elements of E0:= m−1(0).
The elements of m−1(0) are the exit reactions.

Let em ∈ RM be the m-th unit vector, for any nonzero metabolite m ∈ M,
and define e0 = 0 ∈ RM . Then the dynamics of the vector x = (xm)m∈M of
concentrations xm of the metabolites m ∈M is given by the ODE

(1.3) ẋ = f(r, x) :=
∑
j∈E

rj(xm(j)) (em(j) − em(j)) .

Here we consider the reaction rate functions r = (rj)j∈E as given parameters. We
define x0:= 1. We assume positivity of the reaction rate functions rj ∈ C1,

(1.4) rj(ξ) > 0 for ξ > 0 ,

as well as the existence of a positive steady state x∗ > 0, i.e.

(1.5) 0 = f(r, x∗) ,
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for some x∗ with all components x∗m > 0. In practice (1.5) just means that we
omit zero components of x∗. Likewise we omit vanishing reactions in (1.4).

Let us illustrate the role of the artificial zero-complex 0 in a simple example. Con-

sider the reaction network 0
1−→ A

2−→ 0 with a single metabolite M = {A}, M = 1.
The network consists of only two reactions E = {1, 2}: the feed reaction j = 1,
and the exit reaction j = 2. Indeed m(1) = m(2) = 0. The unit “vec-
tor” eA = 1 ∈ RM is scalar, as is e0 = 0. Therefore the reaction rates are
r1 = r1(x0) = r1(1) and r2 = r2(xA). Note that r1 is just a constant. Let us put
these pieces together and abbreviate x := xA. Then the single ODE (1.3) of the

network 0
1−→ A

2−→ 0 becomes ẋ = r1 − r2(x).

Our final assumption requires the general network to be regular at the steady
state x∗ of (1.3): the Jacobian fx(r, x

∗) of the partial derivatives with respect to
x of the ODE vector field f is required to be nonsingular:

(1.6) det fx(r, x
∗) 6= 0 .

This enables us to study the steady state response to any perturbation of the rate
function rj∗ of any reaction j∗, by the standard implicit function theorem. For
any continuously differentiable function ρ ∈ C1, the C1-small perturbation

(1.7) rε := r + ερ

of r = r0 induces a response curve x∗(ε), for small real ε, such that

(1.8) fr · ρ+ fx · ddεx
∗ = 0

at rε, x∗(ε). By regularity (1.6), this determines the resulting perturbation of
x∗. Let us consider the special case where ρ = (ρj)j∈E, ρj = ρj(xm(j)) does not
change the reaction network and only perturbs reaction j∗, so that

ρj(ξ) = 0 , for j 6= j∗ , and(1.9)

ρj∗(x
∗
m(j∗)) = 1 .(1.10)

Here we have normalized the perturbation of rate j∗, without loss of generality.
For this particular choice, we define the resulting (infinitesimal) concentration
response δxj

∗
m of metabolite m at steady state as

(1.11) δxj
∗

m :=
d

dε

∣∣∣
ε=0

x∗m(ε) .

The precise numerical values δxj
∗
m0

of the concentration responses depend on the
precise numerical values of the derivatives rjm:= rj

′(x∗m), for m = m(j). Our
function-free approach does not rely on such numerical data, which are often
unknown. We do not even require positivity of rj

′, in the present paper. Instead
we consider these rjm as variables which enter the responses δxj

∗
m0

via certain
rational expressions. We call δxjm0

algebraically nonzero if δxj
∗
m0
6= 0, as a rational
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function of the variables rjm with m = m(j). In particular this implies δxj
∗
m0
6= 0,

numerically, except on real algebraic varieties of codimension at least 1 in the
space of data rjm.

On the other hand, this view point relies on the derivative variables rjm = rj
′(x∗m)

to be independent of the equilibrium flux values rj(x
∗
m) themselves. This indepen-

dence fails, evidently, in exceptional cases like rj = a · exp(xm). More generally,
independence fails whenever the class of the nonlinearities rj itself solves one
and the same ODE rj

′ = hj(rj) for some fixed function hj. But already two-
parameter families of functions rj are rich enough to justify our function-free
approach via algebraic independence of rj and rj

′. Rate functions of Michaelis-
Menten or Langmuir-Hinshelwood type, as opposed to mere mass action kinetics,
are favorable specific examples.

Theorem 1.1. Let positivity and regularity assumptions (1.4), (1.5) hold for the
monomolecular reaction network (1.1) – (1.3). Moreover assume the Jacobian
determinant in (1.6) is nonzero, algebraically.

Then the concentration response δxj
∗
m of any metabolite m ∈M to a rate pertur-

bation (1.7)– (1.10) of any reaction j∗ ∈ E satisfies

(1.12) δxj
∗

m 6= 0

algebraically if, and only if, there exist two directed paths γ0 and γm for which
the following four conditions all hold true:

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;

(ii) one of the paths contains reaction j∗;

(iii) the paths γ0 and γm terminate at the vertices 0 and m, respectively;

(iv) the two paths are disjoint except for their shared starting vertex m∗.

Here and below, disjoint means that the paths do not share any edge, or any
vertex besides m∗. The condition on γm may appear straightforward, perhaps, to
describe some “domain of influence” of the perturbation j∗. The condition on the
exit path γ0, however, is less intuitive – particularly when the effects of j∗ ∈ γ0

spill over to the side branch γm.

In the special case of m = m∗ the path γm = {m∗} does not contain any edges.
If, in addition, reaction j∗ is the only child arrow emanating from mother vertex
m∗, then a path γ0 from m∗ to 0 always exists and

(1.13) δxj
∗

m∗ 6= 0 ;

see proposition 2.1 below.

If the perturbed reaction j∗ is a feed reaction to the reaction network then the
mother vertex m∗ of j∗ is the zero-complex, m∗ = 0. In this case we may choose

4



γ0 to consist of the vertex m∗ = 0, only, without any edges. Then (i) – (iv) only
require a path γm which starts with the perturbed reaction edge j∗, from m∗, and
terminates at m 6= 0 before reaching the zero-complex.

As a complement to the above theorem on the concentration sensitivity δxj
∗
m of

metabolite m in response to a rate perturbation of reaction j∗, we address flux
sensitivity next. Let Φj′j∗ denote the (infinitesimal) change of the flux through
reaction arrow j′, in response to a rate perturbation of reaction j∗, i.e.

(1.14) Φj′j∗ := δj′j∗ + rj′m(j′) δx
j∗

m(j′) .

The Kronecker-delta δj′j∗ indicates the explicit flux change caused by the external
perturbation at j∗ in reaction j′ = j∗, only. The second term accounts for the
flux change in any reaction j′ which is caused, implicitly, by the concentration
response δxj

∗

m(j′) of the mother reactant m(j′) to the external perturbation at j∗.
We denote partial derivatives of reaction rates at the equilibrium x∗ by

(1.15) rjm :=
∂

∂xm
rj(x

∗) =

{
rj
′(x∗m) for m = m(j) ,

0 otherwise .

See also assumption (1.4). We say that reaction j∗ influences reaction j′, in
symbols: j∗ ; j′, if the flux response Φj′j∗ is algebraically nonzero:

(1.16) j∗ ; j′ ⇐⇒ Φj′j∗ 6= 0 .

The next theorem initiates our structural sensitivity analysis of flux influence.
Like the concentration response above, we show how an external perturbation at
j∗ either propagates downward along a directed path γ′ starting with m∗ and j∗,
or else spills over to a side branch γ′ from j∗ ∈ γ0 \ γ′.

Theorem 1.2. Let the assumptions of theorem 1.1 hold, and consider any pair
of edges j′, j∗ ∈ E, not necessarily distinct.

Then j∗ influences j′, i.e. the flux response Φj′j∗ of reaction j′ to a rate pertur-
bation (1.7) – (1.10) of reaction j∗ satisfies

(1.17) Φj′j∗ 6= 0

algebraically, if, and only if, there exist two directed paths γ0 and γ′ for which the
following four conditions all hold true:

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;

(ii) one of the paths contains reaction j∗;

(iii) the exit path γ0 terminates at vertex 0, and the influence path γ′ terminates
with reaction edge j′: m′ → m′, but omitting the product (head) vertex m′ =
m(j′) of j′;
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Figure 1.1: Summarizing properties (i) – (iv) of theorem 1.2 for the exit di-paths
γ0
i , top, and the influence di-paths γ′i, bottom. Property (i): both paths emanate

from m∗i ; for (ii): one of them contains j∗i ; for (iii): termination is at vertex 0
and edge j′i respectively; for (iv): the two paths are disjoint except for m∗i . The
index i will be used in section 5.

(iv) except for their shared starting vertex m∗, the two paths γ0 and γ′ are dis-
joint.

For an illustration see fig. 1.1. The conditions on the paths γ0 and γ′ in theo-
rem 1.2 are quite similar to those on γ0 and γm in theorem 1.1. However, there
are some subtle differences. Let m:= m(j′) denote the mother reactant of reac-
tion j′. Then the influence path γ′ just is γm, with the edge j′ appended. In
particular γ′ always contains the edge j′ and then terminates.

Consider the single child case, for example, where j∗ is the only child arrow
emanating from the mother vertex m∗. Then

(1.18) Φj′j∗ = 0 ,

for all j′ ∈ E by theorem 1.2, even though δxj
∗

m∗ 6= 0 algebraically, by (1.13)
and theorem 1.1. This follows because the disjointness condition (iv), in case
Φj∗j∗ 6= 0, requires two different di-paths γ0, γ′ to emanate, by (i), from the same
single-child mother m∗ – a contradiction. This effect is owed to the Kronecker-
delta in the flux sensitivity (1.14), of course. It is also easy to prove (1.18) directly.
Indeed (1.8) – (1.10), (1.15) at the single-child vertex m∗ imply

(1.19) δxj
∗

m∗ = −1/rj∗m∗ 6= 0 .

This implicit response compensates the explicit external flux increase by ρ, at j∗,
so that (1.14) implies Φj∗j∗ = 0. Moreover (1.8) then implies

(1.20) δxj
∗

m = 0

for all other metabolites m 6= m∗. This first example is compatible, of course,
with our statements of theorems 1.1 and 1.2.
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Interesting reaction networks contain more reaction edges than metabolites. The
flux sensitivity matrix

(1.21) Φ := (Φj′j∗)j′, j∗∈E

of theorem 1.2 is therefore larger than the more concise concentration sensitivity
matrix

(1.22) δx := (δxj
∗

m)j∗∈E,m∈M .

On the other hand, the square flux sensitivity matrix Φ allows for the concept of
transitivity of influence: we call the flux influence relation j∗ ; j′, alias Φj′j∗ 6= 0
algebraically, transitive if

(1.23) j1 ; j2 and j2 ; j3 implies j1 ; j3 .

Transitivity sounds completely tautological: if a change in the rate of reaction j1
produces a change in j2, and a change of the rate of j2 propagates to j3, then j1
also ought to have influence on j3. Due to the implicit concentration responses
δx of the network, however, this is far from obvious. Alas, it is true.

Theorem 1.3. Let the assumptions of theorem 1.1 hold. Then the flux sensitivity
matrix Φ of (1.21) is transitive. In other words, transitivity (1.23) holds true for
the flux influence relation j∗ ; j′ defined by Φj′j∗ 6= 0 algebraically in (1.16).

Based on flux transitivity of the influence relation ;, we can define an influence
equivalence relation ≈ on the set E of reaction edges j as follows:

(1.24) j ≈ j ,

and, for all edges j1 6= j2,

(1.25) j1 ≈ j2 ⇐⇒ j1 ; j2 and j2 ; j1 .

Reflexivity (1.24) has to be assumed separately because self-influence j ; j fails,
for example, when edge j is a single child. The equivalence classes of ≈ are called
flux components Fi. They form the vertices of an acyclic directed flux influence
graph F (Γ). A directed edge from any vertex F1 to any other vertex F2 indicates
that for some j1 ∈ F1 and j2 ∈ F2, and hence for all, we have the influence
j1 ; j2, but not vice versa. In other words, the flux influence graph F (Γ) depicts
the partial order defined on the flux components Fi by flux influence.

The flux influence graph is a very convenient concept to visualize the hierarchy
of reactions and their influence. For example define the influence sets

(1.26) I(j∗) := {j′ ∈ E; j∗ ; j′} ,

for any reaction j∗ ∈ E. In case j∗ does not influence itself, i.e. for Φj∗j∗ = 0, the
influence set I(j∗) is the set of all reactions j′ “below” j∗ in the partial order of
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the flux influence graph. In other words, I(j∗) consists of the union of j′ in those
other flux components Fi which can be reached from j∗. In case of self-influence
j∗ ; j∗, i.e. for Φj∗j∗ 6= 0 algebraically, the flux component of j∗ itself is added
to I(j∗).

The remaining paper is organized as follows. Section 2 introduces some more
graph jargon and collects some consequences of our positivity and regularity as-
sumptions (1.4) – (1.6) for the monomolecular network (1.1) – (1.3). In particular
we show that the reaction di-graph is strongly connected. Moreover we discuss
di-cycles and spanning trees. Theorems 1.1, 1.2, and 1.3 are proved in sections 6,
3, and 5, respectively. Section 4 is devoted to an analysis of di-cycles and bi-cycles
in the 2-edge-connected influence set I(j∗). See theorem 4.2 and corollaries 4.1,
4.3.

In section 7 we discuss several explicit illustrative examples of artificial, but in-
structive, monomolecular reaction networks, their concentration and flux sensi-
tivities, and their influence graphs. Realistic networks are rarely monomolecular,
of course. For more realistic examples we have already referred to [MoFi14] and
the references there. Somewhat to our surprise, these networks also exhibited
flux transitivity. For the carbon metabolism of the E. coli TCA cycle, the flux
influence graph was particularly helpful to identify and understand the control
hierarchy of its functional constituents.

Acknowledgement. Generous hospitality during extended very fruitful and
enjoyable working visits which made this work possible is mutually acknowl-
edged with particular gratitude. Hiroshi Matano has analyzed our work in com-
plete detail, and his clarifications have greatly encouraged our slow progress in
many points. We also express our sincere thanks for useful comments to Bern-
hard Brehm, Yoh Iwasa, Shuji Ishihara, Hirohisa Kishino, Hiroshi Kokubu, Ya-
sumasa Nishiura, Hiroe Oka, Kiyotaka Okada, Shingo Iwami, and Hannes Stuke.
The participants of the Berlin seminar on “Chemical Reaction Networks” con-
tributed by careful reading, valid criticism, and inspiring enthusiasm. In par-
ticular we would like to mention Isabelle Schneider, Andreas Doll, Lasse Hin-
richsen, Phillipo Lappicy, Yuya Tokuta, and Nicola Vassena. Delightful type-
setting of messy manuscript versions was accomplished by Ulrike Geiger. This
work was supported in part by the JST CREST program of Japan, the Deutsche
Forschungsgemeinschaft SFB 910 “Control of Self-Organizing Nonlinear Systems”,
and the Research in Pairs program at Mathematisches Forschungsinstitut Ober-
wolfach.

2 Positivity, connectivity, and cycles

In the present section we collect some further notions about graphs. In lemma 2.3
and corollary 2.4 we express regularity assumption (1.6) in graph terminology:
the Jacobian determinant of f ′(x∗) is algebraically nonzero if, and only if, there
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exists a directed path to 0 from every metabolite m ∈ M. In particular the
monomolecular reaction network is (weakly) connected by its (undirected) edges.
The complementary positivity assumptions (1.4), (1.5) for the stationary reaction
rates rj, on the other hand, ensure that each weakly connected component is
strongly connected; see lemma 2.5.

Our definition of weak and strong connectivity of vertices m, m′ is standard.
In undirected graphs we say m ∼ m′ are weakly connected if there exists an
undirected path joining m and m′. In di-graphs, m ≈ m′ are strongly connected
if there exist two di-paths: one from m to m′ and one from m′ to m. Without any
edge, m = m′ implies m ∼ m′ and m ≈ m′. The equivalence classes of the vertex
equivalence relations ∼ and ≈ are called weak and strong connected components,
respectively. The flux equivalence ≈ defined in (1.24), (1.25) above is another
example of strong connectivity on the directed flux graph with vertices j ∈ E and
directed edges j1 ; j2 defined by flux influence. The flux components are the
strong connected components of the flux graph.

Strong connectivity has been called weak reversibility by Feinberg; see [Fe95]
for an overview. In the more restrictive setting of mass action kinetics, but
for more general reaction networks of Feinberg deficiency δF = 0, uniqueness
and asymptotic stability of the positive equilibrium x∗ has been proved, in each
stoichiometric compatibility class. As a simple consequence of proposition 2.1
below we observe that monomolecular networks are of deficiency zero. In a very
interesting recent development, uniqueness of the positive equilibrium x∗ has also
been shown, under much less restrictive kinetic assumptions, for “concordant”
networks; see [ShFe13].

Our discussion of regularity assumption (1.6) is purely algebraic, in terms of the
abstract independent variables

(2.1) rjm = rj
′(x∗m) ,

with m = m(j) ∈M ∪ {0} the mother of reaction j ∈ E. We conveniently, but
only temporarily, forget that x∗ is a stationary solution (1.5) of the ODE (1.3),
and we do not require positivity (1.4). We decompose

(2.2) f ′(x∗) = SR

where R = (rjm)j∈E,m∈M is the E×M reactivity matrix of the nontrivial deriva-
tives rjm = rj

′(x∗m) with m = m(j), viewed as independent variables, and filled
up by zeros as in (1.15). The M × E stoichiometric matrix S: RE → RM is
defined by

(2.3) Sej = em(j) − em(j) .

Here ej defines the j-th unit vector in RE, and em the m-th unit vector in RM

with the convention e0:= 0. Note Sej = em(j) for feed reactions and Sej = −em(j)

for exit reactions j.
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Our main tool in the proof of lemma 2.3 below, as well as in the theorems,
is the construction of an augmented matrix A: RM × RN → RE, where N :=
dim ker S accounts for the kernel of the stoichiometric matrix S: RE → RM . Let
c1, . . . , cN ∈ RE be any basis for ker S, with components ckj , and define the E×N
matrix

(2.4) C := (ckj )j∈E, k∈{1,...,N} .

Then the augmented matrix A is defined as the block matrix

(2.5) A := (R, C) .

At first it looks redundant to lift issues concerning the M ×M matrix f ′(x∗) to
the possibly much larger E × (M + N) matrix A. The reaction aspect R and
the graph aspect C of S, however, become clearly separated and can now be
addressed much more conveniently.

We study the graph aspect first. For the moment we ignore all orientations of
the edge arrows j and consider Γ = (M ∪ {0}, E) as an undirected graph. We
also decompose

(2.6) S = P0 D

where the projection P0: RM+1 → RM simply drops the last component associ-
ated to the vertex 0 in Γ. The matrix D: RE → RM+1 is the boundary map from
edges j ∈ E to vertices m ∈M ∪ {0} in Γ, defined by

(2.7) Dej := em(j) − em(j) .

The homologies H0(Γ) and H1(Γ) are defined by

(2.8)
H0(Γ) := (range D)⊥ ≤RM+1 ;

H1(Γ) := ker D ≤RE .

The alternating sum of their dimensions is the Euler characteristic

(2.9) χ(Γ) := dimH0 − dimH1 = M + 1− E ,

alias the negative Fredholm index of the boundary map D. Note how dimH0

counts the (weakly) connected components W of Γ; a basis of H0 is given by the
indicator functions 1W of the component vertices.

A maximal spanning forest T of an undirected graph Γ is any acyclic subgraph
of Γ, which contains an (undirected) cycle as soon as any edge is added to T .
Note that T must contain all vertices M ∪ {0} of Γ, i.e. T = (M ∪ {0}, E(T )).
Any edge j 6∈ E(T ) generates an undirected cycle cj in T ∪ {j}, by maximality
of T . The cycle cj is unique, by acyclicity of T . Note how cj ∈ ker D = H1(Γ)
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are linearly independent. By maximality and acyclicity of T , the cycles cj form
a basis for H1, and hence

(2.10) dimH1 = E − E(T )

where E(T ) counts the edges of any maximal spanning forest T of Γ.

In case the graph Γ is (weakly) connected, any maximal spanning forest T of Γ is
also connected and hence is a spanning tree. We deviate slightly from standard
terminology and call T a maximal spanning tree, in the connected case, to recall
and emphasize that T consists of a maximal number of edges.

Proposition 2.1. In the above setting and notation, the kernel of the stoichio-
metric matrix S coincides with the first homology: H1(Γ) = ker D = ker S. Equiv-
alently,

(2.11) dimH1(Γ) = N := dim ker S .

Moreover the following properties are mutually equivalent

(i) S: RE → RM is surjective;

(ii) N := dim ker S = E −M ;

(iii) the matrix A: RM+N → RE is square;

(iv) Γ is (weakly) connected, i.e.

(2.12) dimH0(Γ) = 1 .

Proof. We prove ker D = ker S and (2.11) first. Obviously S = P0 D implies
ker D ≤ ker S. Equality holds if, and only if, the spanning element e0 of ker P0,
which is omitted by P0, satisfies

(2.13) e0 6∈ range D = H0(Γ)⊥ .

Admittedly e0 ⊥ 1W , for the indicator function of any weakly connected com-
ponent W of Γ which does not contain vertex 0. However eT0 · 1W0 = 1, by
definition, for the weakly connected component W0 of the vertex 0 itself. This
proves ker D = ker S, and hence (2.11):

(2.14) dimH1(Γ) := dim ker D = dim ker S =: N .

To prove the equivalence of (i) – (iv) we invoke elementary linear algebra for the
stoichiometric matrix S: RE → RM . Abbreviate def S:= dim ker S and cork S:=
codim range S. Then

(2.15) E −M = def S− cork S = N − cork S .
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This proves the equivalence (i) ⇐⇒ (ii). Trivially (ii) ⇐⇒ (iii). The equivalence
(ii) ⇐⇒ (iv), alias (2.12), follows from

(2.16) dimH0 = dimH1 +M + 1− E = 1 +N − (E −M) .

Here the first equality is (2.9), and (2.11) provides the second equality. This
proves the proposition. ./

In the slightly different language of Feinberg, proposition 2.1 shows that monomolec-
ular networks possess deficiency zero; see [Fe95]. Indeed the Feinberg deficiency
δF can be defined as δF := dim ker S− dim ker D = 0, by (2.14).

We can now return to the role of the symbolic reaction part R for the determinant
of the Jacobian matrix f ′(x∗) = SR and in the augmented matrix A = (R, C);
see (2.2) and (2.5).

Proposition 2.2. Consider any directed graph Γ = (M ∪ {0}, E) as in (1.1).

Then

(2.17) det SR 6= 0 ⇐⇒ det A 6= 0.

Proof. We first show that det SR 6= 0 implies

(2.18) det A 6= 0 .

We address the converse claim afterwards.

Suppose det SR 6= 0. Then S is surjective, and A = (R, C) is square by propo-
sition 2.1 (i), (iii). We show that ker A is trivial. Indeed, consider ξ ∈ RM and
µ ∈ RN such that

(2.19) 0 = R ξ + Cµ .

Applying S we obtain SR ξ = 0. Indeed definition (2.4) of the S-kernel part C
of A implies SC = 0. Our assumption det SR 6= 0 then implies ξ = 0. Linear
independence of the columns ck of C, a basis for ker S, therefore implies µ = 0 in
(2.19). This proves claim (2.18).

To show, conversely, that det A 6= 0 implies SR 6= 0, we show that SR possesses
trivial kernel. Let SR ξ = 0. Then R ξ ∈ ker S = span {c1, . . . , cN} implies that
there exists a linear combination µ ∈ RN such that 0 = R ξ + Cµ, as in (2.19).
But now det A 6= 0 implies ξ = 0, and the lemma is proved. ./

We now view det(SR) as a formal polynomial in the nontrivial derivative variables
rjm, for j ∈ E and m = m(j). We say that det SR 6= 0 algebraically, if this
polynomial does not vanish identically.
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Lemma 2.3. Consider any directed graph Γ = (M ∪ {0}, E) as in (1.1).

Then

(2.20) det SR 6= 0

algebraically if, and only if, for every vertex m0 ∈M there exists a directed exit
path γ0 in Γ from vertex m0 to vertex 0.

Proof. By proposition 2.2, (2.17) we may replace det SR 6= 0 in (2.20) by
det A 6= 0. By definition det A 6= 0 holds, algebraically, if and only if the ex-
pansion of the determinant contains any nontrivial monomial in the nontrivial
entries rjm of R.

Consider any child selection map

(2.21)
J : M → E

m → J(m).

Then the mother map m: E → M ∪ {0} is a left inverse of the child selection
map J :

(2.22) m ◦ J = idM .

Now consider the polynomial expansion

(2.23) det A =
∑
J

aJr
J .

The generating nontrivial monomials of this expansion are

(2.24) rJ :=
∏
m∈M

rJ(m),m =
∏

j∈J(M)

rj
′(xm(j)) .

The monomials rJ are in one-to-one correspondence with the child selection maps
J . In fact det A 6= 0 algebraically if, and only if, at least one coefficient aJ of
the nontrivial monomials rJ in (2.23) is nonzero. The coefficient aJ is the sub-
determinant

(2.25) aJ = ± det(ckj )j∈E\J(M), k∈{1,...,N}

of the kernel part C of the augmented matrix A.

We still have a choice for the specific basis c1, . . . , cN of ker S. We choose C to
be defined by the cycles ck of a maximal spanning forest T0, as in (2.10). In fact
T0 is a maximal spanning tree because the graph Γ is connected. This follows
from our assumption det SR 6= 0, surjectivity of the stoichiometric matrix S, and
proposition 2.1 (i), (iv).
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In (2.25) the C-rows of J(M) are omitted. We introduce the abbreviation
Č(J(M)) for that square matrix. It is now crucial to observe that

(2.26) det Č(E′) 6= 0

holds if, and only if, T = (M ∪ {0}, E′) is a maximal spanning tree of Γ. Indeed
Č(E′) defines the base change in ker S from our original cycle basis defined by
the maximal spanning tree T0 to the cycle basis defined by T .

Now consider m0 ∈ M and let us reactivate edge orientations. The maximal
spanning tree T with vertices M ∪ {0} and edges in E′ = J(M) selects one
unique child arrow J(m) out of any mother vertex m ∈M. This defines a unique
directed path γ0 starting at m0. Because the tree T is acyclic the di-path γ0

cannot return to itself, ever. Therefore γ0 can only terminate at the exit vertex
0 6∈M, as claimed in the lemma.

Conversely, let us suppose next that there exists a di-path γ0 in Γ = (M ∪ {0}, E)
from any m ∈ M to 0. Then Γ is (weakly) connected. To show det A 6= 0
algebraically, it is then sufficient to construct a child selection J : M → E as
in (2.22), such that T = (M ∪ {0}, J(M)) is a maximal spanning tree of Γ.

It is easy to construct J from the paths γ0, inductively. Consider any acyclic exit
di-path. Attach any missing vertex m ∈M by following its acyclic exit di-path γ0

until it bumps into any vertex which has been taken care of before. Inductively,
this selects a unique child arrow J(m), for any mother vertex m ∈M. The child
selection J , in turn, defines a maximal spanning tree T = (M ∪ {0}, J(M)) which
satisfies (2.22). In particular J defines a nontrivial monomial (2.24) of det A with
nonzero coefficient aJ as in (2.23), (2.25). Therefore det A 6= 0 algebraically.
Invoking lemma 2.2 proves the lemma. ./

The above proof also shows the following variant in terms of child selection maps
J : M→ E which are defined to possess the mother map m: E→M ∪ {0} as a
left inverse, m ◦ J = idM. See (2.21), (2.22).

Corollary 2.4. In the setting of lemma 2.3, det SR 6= 0 holds algebraically
if, and only if, there exists a child selection map J : M → E such that T =
(M ∪ {0}, J(M)) is a maximal spanning tree of the network Γ = (M ∪ {0}, E).

By construction via the child selection map J the directed tree T possesses the
following additional properties:

(i) any di-path in T terminates at 0;

(ii) for any edge j 6∈ T , the following alternative holds true:
(a) either, the unique cycle cj in T ∪ {j} is a di-cycle,
(b) or else, the short-cut j 6∈ T runs parallel to the di-path cj ∩ T in T ;

(iii) T does not contain any feed reaction j emanating from 0;
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(iv) any feed reaction j defines a unique di-cycle cj in T ∪ {j}, which runs from
0 to 0.

We now turn to the positivity assumptions (1.4), (1.5) of the stationary reaction
rates rj = rj(x

∗) > 0; see also [Fe95].

Lemma 2.5. Let positivity assumptions (1.4), (1.5) hold.

Then any weakly connected component of the reaction network Γ is strongly con-
nected.

In particular suppose regularity assumption (1.6) holds in addition, i.e. det f ′(x∗) 6=
0. Then Γ is strongly connected.

Proof. Part 2 is a consequence of part 1 and proposition 2.1 (i), (iv) applied to
surjective f ′(x∗) = SR.

Part 1 is well-known. For example, analogously to the end of section 1, consider
the acyclic induced di-graph on the strongly connected components W within
any weak connected component of Γ. Consider a minimal component W , in
this partial order. Remaining edge arrows, if any, then point towards W , and
not away from W . The reaction fluxes rj satisfy Kirchhoff’s law at any vertex
m. Therefore the total in-flow to W must vanish. Since all reaction fluxes rj
are strictly positive, there cannot exist any edge arrows pointing towards W .
Therefore the strong component W coincides with its weak component. This
proves the lemma. ./

3 Proof of theorem 1.2: flux response

Throughout the next three proof sections let positivity assumptions (1.4), (1.5)
and regularity assumption (1.6) hold. Our proof proceeds somewhat analogously
to the proof of lemma 2.3. We crucially rely on maximal spanning trees T and
on the augmented matrix A; see (2.4), (2.5) and proposition 2.1.

Fix j∗ ∈ E. We first calculate the flux response vector Φ∗:= (Φj′j∗)j′∈E to the
perturbation vector ρ = e∗:= ej∗ of the reactions; see (1.7) – (1.10). The implicit
function theorem (1.8) for the concentration response δx∗:= (δxj

∗
m)m∈M of (1.11)

then implies

(3.1) S e∗ + SR δx∗ = 0 .

See (2.2), (2.3) for the stoichiometric matrix S and the reactivity matrix R. By
definition of the kernel matrix C of S in (2.4), this is equivalent to

(3.2) e∗ + A

(
δx∗

µ∗

)
= e∗ + R δx∗ + Cµ∗ = 0
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for some suitable linear combination µ∗ of kernel vectors (ckj )j∈E of S. On the
other hand,

(3.3) Φ∗ = e∗ + R δx∗ = −Cµ∗

by definition (1.14) of the flux response. By regularity assumption (1.6) the
Jacobian f ′(x∗) = SR is invertible. Therefore A is invertible by proposition 2.2,
(2.18). To calculate the flux response Φ∗ we can therefore solve (3.2) for µ∗ and
insert the result in (3.3).

By the Cramer rule we immediately obtain the components

(3.4) −µ∗k det A = (−1)M+k+j∗ det Ǎj∗,M+k ,

for k = 1, . . . , N . Here Ǎj∗,M+k is the matrix A = (R, C) with omitted row j∗

and column M + k, alias column k of C. Insertion of (3.4) into (3.3) yields

(3.5)

Φj′j∗ det A = (Φ∗)j′ det A = (C · (−µ∗))j′ det A =

=
N∑
k=1

ckj′ · (−µ∗k det A) =

=
N∑
k=1

(−1)M+k+j∗ ckj′ · det Ǎj∗,M+k =

= detAj′j∗ .

Here the matrix Aj′j∗ coincides with the augmented matrix A except for the
following two replacements

row j∗ : (0 . . . 0, c1j′ . . . c
N
j′ ) ;(3.6)

row j′ : (rj′1 . . . rj′M , 0 . . . 0);(3.7)

for j′ 6= j∗. The comma “ , ” separates the first M columns of R = (rjm) from
the subsequent N columns of C = (ckj ) in A = (R, C). To prove (3.5)–(3.7), we
have interpreted the sum in the third line of (3.5) as an expansion of det A with
respect to row j∗, after the replacement (3.6). Subtracting row j∗ from row j′, in
a second step, provides the replacement (3.7) in row j′ to arrive at detAj′j∗ . In
case j′ = j∗ we analogously obtain Aj∗j∗ with only the first replacement (3.6).

To show the equivalence of the nonzero flux influence condition Φj′j∗ 6= 0 of (1.17)
with the path conditions (i) – (iv) of theorem 1.2 we first show sufficiency of (1.17).
By (3.5), the assumptions Φj′j∗ 6= 0 and det A 6= 0 imply detAj′j∗ 6= 0, alge-
braically.

Our algebraic analysis of detAj′j∗ 6= 0 for the modified matrix Aj′j∗ now proceeds
analogously to our analysis of det A 6= 0 in the proof of lemma 2.3; see (2.21) –
(2.26). This time, we can assert the existence of a child selection J : M→ E, i.e.
with the mother map m: E→M ∪ {0} as a left inverse m ◦ J = idM, such that
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the remaining N = E −M rows E \ J(M) of the C-part Cj′j∗ of Aj′j∗ form a
cycle basis of ker S. This is slightly delicate due to the modifications (3.6), (3.7)
of Aj′j∗ .

We consider the general case j′ 6= j∗ of (3.6) and (3.7) first. The null vector in
the left part of (3.6) requires

(3.8) j∗ 6∈ J(M)

for a nonzero contribution aJr
J to detAj′j∗ . The null vector in the right part

of (3.7), on the other hand, requires

(3.9) j′ ∈ J(M) .

In particular m′:= m(j′) ∈M and hence m′ 6= 0. The remaining rows E \ J(M)
of Aj′j∗ , however, correspond to the A-rows in

(3.10)
J c := E \ J ′ , with

J ′ := (J(M) \ {j′}) ∪ {j∗} .

Due to these modifications the child selection graph T := (M ∪ {0}, J(M)) of
the modified matrix Aj′j∗ need not be a maximal spanning tree, this time, as it
had been for A before. Let us therefore replace the child selection graph T :=
(M ∪ {0}, J(M)) by

(3.11) T ′ := (M ∪ {0}, J ′) ,

where J ′ swaps edge j′ of T out and edge j∗ in.

Then T ′ is a maximal spanning tree, because detAj′j∗ 6= 0 algebraically. However,
T ′ is not defined by child selection. In fact T ′ possesses a single forward branch
point at the mother m∗ = m(j∗) in case m′:= m(j′) 6= m∗ 6= 0.

We use the edge directions in T ′ to choose the directed paths γ0 and γ′ as follows.
If j′ 6= j∗ have the same mother m∗ = m′ 6= 0, then the influence path γ′ is the
edge j′ from vertex m∗ = m′ to m′ = m(j′). The exit path γ0 is the path from
m∗ along j∗ to 0 procured in lemma 2.3.

If the mothers m′ and m∗ are different, and both different from 0, i.e. 0 6= m′ 6=
m∗ 6= 0, then T ′ possesses a single branch point at m∗. Any other vertex m ∈M
of T ′ possesses a unique outgoing arrow j = J(m). We can therefore uniquely
extend the two di-paths γ∗ 3 j∗ and γJ 3 J(m∗) 6= j∗ emanating from m∗

forward, by J in the acyclic tree T ′, as in T , until they either hit 0 or m′. Indeed
the di-paths cannot return to themselves because T ′ is acyclic. For the same
reason, the di-paths remain disjoint after starting at m∗. In particular exactly
one of the di-paths extends to 0; this path is the exit di-path γ0. The other
di-path eraches m′. Extended by j′ but omitting the head m′:= m(j′), this is the
influence di-path γ′.
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If m∗ = 0 6= m′ we choose the exit path γ0 = {m∗} without any edge. To define
the di-path γ′ we start from m∗ = 0 along j∗ in acyclic T ′, as above, following
the orientation of T, J . This path cannot terminate at 0, or else it would define
a cycle in T ′. Hence it terminates at m′ and we can append j′ as before.

It only remains to consider the easy case j′ = j∗, with (3.6). Then the influence
di-path γ′ consists of the edge j∗ with its mother m∗. To construct the exit di-
path γ0 63 j∗ we note that j∗ 6∈ J(M) still holds, as in (3.8). In consequence
we obtain T ′ = T and acyclicity of T . Following the edge J(m∗) 6= j∗ out of
m∗ along the orientation of T ′ = T we reach 0 and obtain γ0. This proves the
only-if-part of theorem 1.2.

To prove the converse if-part of theorem 1.2, i.e. necessity of (1.17), we start from
given disjoint paths γ0 and γ′ from m∗ = m(j∗) to 0 and j′, such that properties
(i) – (iv) of theorem 1.2 all hold. For brevity we only consider the main case of j∗

and j′ with distinct nonzero mothers m∗ = m(j∗) 6= m(j′), leaving the remaining
cases as straightforward exercises.

To show Φj′j∗ 6= 0 we have to show that detAj′j∗ 6= 0, algebraically; see (3.5).
Equivalently we have to construct a child selection J : M → E satisfying (3.8),
(3.9), such that T ′ defined in (3.10), (3.11) becomes a maximal spanning tree of
the network Γ = (M ∪ {0}, E).

For the vertices m of γ0 ∪ γ′, excepting the head m′ = m(j′) of j′ and the mother
m∗ of j∗, we define J(m) to be the unique edge j in γ0 ∪ γ′ which emanates from
m. At m∗ we have j∗ and one other such edge; we pick this other one for J(m∗).
This construction is feasible and unique by properties (i), (ii), (iv) of the di-paths
γ0 and γ′. Moreover j∗ 6∈ J(M), so far, and j′ = J(m′) ∈ J(M), as required
in (3.8) and (3.9). To complete the construction of J consider any remaining
vertex m ∈M. By lemma 2.3 there exists a di-path γm from m to 0. We proceed
by iteration on m. At each step we terminate the di-path γm as soon as it hits any
vertex m0 where J has already been constructed. The di-path γm then extends
J to all previous vertices on γm. This completes the definition of J .

The resulting graph T ′ defined in (3.10), (3.11) is (undirected) acyclic, by the
above inductive construction. Indeed γ0 ∪ (γ′ \ {j′}) is acyclic, by nonintersec-
tion property (iv) of γ′. Assuming acyclicity before each induction step preserves
acyclicity. Indeed the path γm is acyclic by definition. Because γm starts at m,
outside the previous construction, and terminates upon first contact, it cannot
create any new undirected cycle. This proves that T ′ is acyclic. Hence T ′ is a
tree which omits E −M = N edges. Since dimH1 = N is the number of inde-
pendent cycles, by proposition 2.1, the subgraph T ′ will therefore be a maximal
spanning tree, automatically. This shows det Φj′j∗ = detAj′j∗ 6= 0 algebraically
and completes the proof of theorem 1.2. ./
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4 Cycles of influence

Our proof of flux influence theorem 1.2 in section 3 has been based on the con-
struction of a maximal spanning tree T ′ from a suitable child selection graph T ,
as an intermediate step; see (3.8) – (3.11). In corollary 4.1 we summarize the
resulting variant of theorem 1.2 as a separate characterization of algebraically
nonzero fluxes Φj′j∗ 6= 0. In theorem 4.2 and corollary 4.3 we attempt to elu-
cidate how the perturbation influence of reaction j∗ spreads to j′ via di-cycles,
bi-cycles, and side branches.

Corollary 4.1. Let j′ 6= j∗ be any two distinct reactions and let the assumptions
of theorem 1.2 hold. Then algebraically nonzero flux influence Φj′j∗, as stated in
(1.17) is equivalent to the existence of a child selection J : M → E \ {j∗} such
that the modified graph T ′ defined in (3.10), (3.11) is a maximal spanning tree of
the reaction network Γ = (M ∪ {0}, E).

The next theorem describes the cyclicity properties of j′. Let T ′ ∪ j′ denote the
maximal spanning tree T ′ with added edge j′, i.e.

(4.1) T ′ ∪ j′ = (M ∪ {0}, J(M) ∪ {j∗}) = T ∪ j∗ .

Recall that the child selection graph T = (M ∪ {0}, J(M)) of J need not be
a maximal spanning tree. Because T ′ is a maximal spanning tree, in contrast,
T ′ ∪ j′ contains a unique cycle c′, not necessarily directed. Also recall the disjoint
directed paths γ0 and γ′ from the mother vertex m∗ to 0 and j′, respectively, as
provided by theorem 1.2.

We can now describe a trichotomy of cyclicity cases for reactions j′ in the influence
set I(j∗) of the perturbed reaction j∗. A directed cycle is called di-cycle. A bi-
cycle is a non-oriented cycle which decomposes into two parallel di-path arcs,
each with at least one edge. The arcs are required to be disjoint, except for their
shared start and termination vertices. See fig. 4.1 for an illustration of the three
cases arising in theorem 4.2.

Theorem 4.2. Fix the assumptions and notations of theorem 1.2 and corol-
lary 4.1 above. Let j∗ influence j′ 6= j∗. Then exactly one of the following three
mutually exclusive cases can arise:

(i) The cycle c′ of j′ is directed and does not contain j∗. Then the influence
di-path γ′ need not be contained in c′. The exit di-path γ0 intersects γ′ ∪ c′
at the mother vertex m∗ of j∗, only.

(ii) The cycle c′ of j′ is directed and contains j∗. Then the influence di-path
γ′ also contains j∗ and is contained in c′. The cycle c′ intersects the exit
di-path γ0 only at the mother vertex m∗ of j∗.
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Fig. 3.1
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Figure 4.1: The trichotomy of cycle configurations, exit di-paths γ0, and in-
fluence di-paths γ′ arising in theorem 4.2. Case (i): unique di-cycle c in the
child selection graph T . Cases (ii) and (iii): di-cycle and bi-cycle c′ = c∗ in
T ′ ∪ j′ = T ∪ j∗ with acyclic child selection graphs T , respectively.

(iii) The cycle c′ of j′ is not directed. Then c′ is a bi-cycle and contains j∗. The
two parallel directed arcs of the bi-cycle c′ both emanate from the mother
vertex m∗ of j∗. One arc contains the influence di-path γ′. The other arc
is the intersection of the exit di-path γ0 with c′. The perturbed edge j∗ may
be contained in either arc.

Proof. It is evident a priori that the three cases (i) – (iii) are mutually exclusive.
It is less evident that no other case can occur. Instead of justifying the trichotomy
(i) – (iii) directly, we therefore proceed via a complete list of cases for the child
selection graph T = (M ∪ {0}, J(M)). We show below that case (i) occurs if T
contains any directed or undirected cycle c. Next suppose T is acyclic. Then T
is also a maximal spanning tree, like T ′ itself, because T and T ′ have the same
number of edges. Therefore the edge j∗ 6∈ T defines a unique undirected cycle c∗

in T ∪ j∗. Below we show

(4.2) c∗ = c′ .

Depending on whether c′ is directed or not, this will provide the two remaining
cases (ii) and (iii) of the theorem. Invoking theorem 1.2 then proves that j∗

influences all edges on c′.

Suppose first that the child selection graph T of J : M → E \ {j∗} contains any
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directed or undirected cycle c. We claim

(4.3) c = c′ ,

and in particular uniqueness of c. Indeed (4.1) implies that

(4.4) c ⊆ T ⊆ T ′ ∪ j′

is a cycle in T ′ ∪ j′, like c′. By uniqueness of c′ in T ′ ∪ j′ this proves c = c′.

Because T is defined by a child selection J , the cycle c′ = c ⊆ T cannot possess
any vertex with two outgoing edges in c′. Therefore c′ = c ⊆ T is directed.
Because c ⊆ T , the cycle c′ = c does not contain edge j∗. The influence di-path
γ′ in T ′ ∪ j′ must enter c′ somewhere, to reach j′, and is then trapped in c′ by child
selection. Here we use that child selection forces unique forward continuation of
di-paths. Any intersection vertex of the exit di-path γ0 with c′ = c, other than
possibly m∗, would likewise trap γ0 in c′. This would prevent γ0 from reaching
0. Indeed 0 6∈ c′ = c ⊆ T , because child selection J : M → E prevents any feed
reaction to belong to c. Therefore γ0 and γ′ ∪ c′ are disjoint, except possibly for
m∗. This proves claim (i).

From now on we suppose that T is acyclic and hence is a maximal spanning tree.
Let c∗ denote the unique undirected cycle in T ∪ j∗ = T ′ ∪ j′. Again (4.1) implies
c∗ = c′, by uniqueness of the cycle c′ in T ′ ∪ j′. By construction j∗ is in c∗ = c′,
independently of orientability of c′ in the resulting cases (ii), (iii).

To address case (ii) assume the cycle c′ = c∗ is directed. By forward unique
continuation of any di-path in the child selection tree T , the di-path γ∗ in c′

starting from m∗ along j∗ ∈ c′ must follow c′ afterwards, until it reaches j′ ∈ c′.
Therefore γ′ = γ∗ ⊆ c′.

We show indirectly that the exit di-path γ0 does not intersect c′, except at m∗.
Indeed c′ = c∗ ⊆ T ∪ j∗ implies that child selection holds on c′ after m∗. Therefore
any other intersection would trap the forward di-path γ0 on c′ until it reaches
m∗. This is impossible for the exit di-path γ0, from m∗ to 0, because paths are
defined to be without self-intersection. This shows (ii).

To address case (iii), finally, assume c′ = c∗ ⊆ T ′ ∪ j′ = T ∪ j∗ is not directed.
Because T is defined by child selection, the mother vertex m∗ of j∗ is the only
vertex in T ∪ j∗ with a forward branching into two outgoing child edges. Therefore
the non-oriented cycle c′ contains, not only m∗ and j∗ but, both outgoing child
edges of m∗ in T ∪ j∗. Unique forward continuation in T defines two outgoing di-
path arcs in c′. Because m∗ is the only forward branching vertex in T ∪ j∗ ⊇ c′,
the two disjoint arcs emanating from m∗ must meet at some first vertex in c′.
Hence they decompose c′. Therefore c′ is a bi-cycle. Since j′ ∈ c′, one of the arcs
must contain the influence di-path γ′. The other arc then must be contained in
the exit di-path γ0. This settles case (iii) and proves the theorem. ./
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Corollary 4.3. Fix the assumptions and notations of theorem 1.2. Also assume
the flux influence set I(j∗), as defined in (1.26), is nonempty.

Then the influence set I(j∗) is 2-edge-connected. More precisely, any reaction
j′ ∈ I(j∗) is contained in a di-cycle or bi-cycle c′ ⊆ I(j∗).

Proof. We first consider absent self-influence of j∗ 6∈ I(j∗) 6= ∅. Then the-
orem 1.2 implies that any exit di-path γ0 from m∗ to 0 must start along j∗.
Moreover j∗ 6= j′ ∈ I(j∗). Therefore case (i) of theorem 4.2 applies, and identifies
a di-cycle j′ ∈ c′ ⊆ I(j∗).

Next suppose j∗ ∈ I(j∗) influences itself. The case j′ ∈ I(j∗) \ {j∗} has been
settled in theorem 4.2. It remains to consider the case j′ = j∗ ∈ I(j∗). By
theorem 1.2, there exists an exit di-path γ0 from m∗ to 0 which is disjoint from
the path γ′. Recall that γ′ is given by m∗ and the edge j′ = j∗, but excluding the
head m′′:= m(j′) of j′. Appending any exit di-path γ′′ of m′′, until it first meets
γ0 identifies c′ as in cases (ii) or (iii) of theorem 4.2. This proves the corollary. ./

5 Proof of theorem 1.3: transitivity

To prove transitivity theorem 1.3 we consider any three edges j1
∗, j2

∗, j2
′ ∈ E

such that j1
∗ ; j2

∗ ; j2
′. We have to show j1

∗ ; j2
′. In other words we have

to show the implication

(5.1) Φj2′j2∗ 6= 0 , Φj2∗j1∗ 6= 0 =⇒ Φj2′j1∗ 6= 0 ,

for algebraically nonzero flux responses; see (1.23). Omitting trivial cases we may
assume

(5.2) j1
∗ 6= j2

∗ 6= j2
′ .

Our proof will proceed via the exit and influence di-paths γ0
i , γ

′
i associated to the

nonzero flux response Φj′ij
∗
i

in (5.1), for i = 1, 2 and j′1:= j∗2 ; see theorem 1.2. In
subsection 5.1 we fix some notation on the di-paths γ0

i , γ
′
i, their vertices, edges,

and concentrations. The transitivity claim Φj2′j1∗ 6= 0 of (5.1) is established, again
by theorem 1.2, via a general construction of paths γ0, γ′. Our construction is
sketched at the end of subsection 5.1. As a warm-up we collect certain special
cases in 5.2. The general construction is detailed in 5.3.

5.1 Notation and terminology

For i = 1, 2, let γ0
i denote the path from vertex m∗i to 0 established in theorem 1.2

for Φj′ij
∗
i
6= 0. Similarly γ′i denotes the path from m∗i to the final edge j′i: m

′
i → m′i.

See fig. 1.1. In our specific case (5.1) we have j′1 = j∗2 and hence m∗2 = m′1. The
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paths γ0
i , γ

′
i satisfy properties (i) – (iv) of theorem 1.2. Omitting indices, we have

to construct paths γ0 and γ′ with m∗:= m∗1 and final edge j′ = j′2 from m′:= m2
′

to m′:= m′2 such that properties (i) – (iv) hold for γ0, γ′. In summary,

(5.3) m∗ = m∗1 , j
∗ = j∗1 , j

′
1 = j∗2 , m

∗
2 = m′1 , m

′ = m′2 , j
′ = j2

′, m′ = m′2 .

For arbitrary acyclic di-paths γ with designated orientation ordering it is con-
venient to denote open and closed intervals on γ by their bounding vertices
as (m1, m2), [m1, m2] etc., as on the real line. To specify intervals on γ′i we
use the notation (m1, m2)

′
i etc., and similarly for intervals on γ0

i . For example
γ0
i = [m∗i , 0]0i , j

′
i = (m′i, m

′
i)
′
i and γ′i = [m∗i , m

′
i)
′
i. For vertices m1, m2 on the

same path γ0
1 or γ′1 we say that m2 occurs later than m1 if m1 precedes m2 in

the order of γ0
1 or γ′1. For the same configuration on γ0

2 or γ′2, in contrast, we say
that m2 occurs to the right of m1.

We use γi:= γ0
i ∪ γ′i to denote the union of the paths γ0

i and γ′i, as a set. Consider
intersection vertices

(5.4) m ∈ (γ1 ∩ γ2) \ {m∗1}

other than the shared starting vertex m∗ = m∗1 of γ0
1 and γ′1. Then we call m

white if m ∈ γ0
1 and black for m ∈ γ′1. See nonintersection property (iv) of

theorem 1.2. The only shared start vertex m:= m∗1, if also present in γ2, is called
white if j∗ = j1

∗ ⊆ γ′1 and black for j∗1 ⊆ γ0
1 ; see property (ii). Correspondingly,

we call c(m) ∈ {0, ′} the color of m. In other words, the color of m simply tracks
the side branch of γ1 where the intersection m occurs:

(5.5) m ∈ γc(m)
1 ∩ γ2 .

Also note that the color of m∗2 = m′1 ∈ γ′1 ∩ γ0
2 ∩ γ′2 is black, unless

(5.6) m∗1 = m∗2 and j∗1 ⊆ γ′1 .

We treat this latter case separately in 5.2, as case 1.

Our general construction of the di-paths γ0 = [m∗, 0]0 and γ′ = [m∗, m′)′ with
properties (i) – (iv) of theorem 1.2 hinges on the construction of a cut-pair {µ0, µ′}
of vertices µ0 and µ′ defined by the following three properties

(5.7)

(a) µ0 ∈ γ0
2 and µ′ ∈ γ′2 ;

(b) µ0 and µ′ are of opposite color ;

(c) any black or white intersection vertexm of γ1 ∩ γ2

which is strictly to the right of {µ0, µ′} on γ2 = γ0
2 ∪ γ′2

occurs strictly later than {µ0, µ′} on γ1 = γ0
1 ∪ γ′1 as well .

With the above notation and terminology our general construction of the paths
γ0, γ′, which will prove transitivity claim (5.1) and theorem 1.3, proceeds as
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follows. Let {µ0, µ′} be a cut-pair. Define the di-paths

(5.8)
γ0 := [m∗1, µ

0]c
0

1 [µ0, 0]02 ;

γ′ := [m∗1, µ
′]c
′

1 [µ′, m′2)
′
2

by concatenation at the cut-vertices µ0, µ′. Here c0 = c(µ0), c′ = c(µ′) ∈ {0, ′}
denote the colors of the cut vertices µ0, µ′, respectively. In subsection 5.3 below
we show that cut-pairs {µ0, µ′} exist and that the above di-paths γ0 and γ′ satisfy
properties (i) – (iv) of theorem 1.2 – establishing transitivity of flux influence.

5.2 Special cases

In this subsection we address the construction of di-paths γ0, γ′ with proper-
ties (i) – (iv) of theorem 1.2, in several special cases. We begin with the case
m∗1 = m∗2, j

∗
1 ⊆ γ′1 of coloring conflict (5.6). Afterwards we address the cases

where one of the vertices m∗1, m
∗
2, m

′
2 is zero.

Case 1: m∗1 = m∗2, j
∗
1 ⊆ γ′1.

We then define γρ:= γρ2 for ρ ∈ {0, ′}. We have to show properties (i) –
(iv) of theorem 1.2 follow for γρ from the corresponding properties for
γρ2 ; see fig. 1.1.

Emanation property (i) of γρ holds becausem∗ = m∗1, by assertions (5.3),
and because m∗1 = m∗2, by assumption.

Leading edge property (ii) of γρ claims

(5.9) j∗ ⊆ γ0
2 ∪ γ′2 .

Assertion (5.3) implies j∗ = j∗1 , and j∗1 ⊆ γ′1 by assumption. Because
m′1 = m∗2 by (5.3), and m∗2 = m∗1 by assumption, we observe that γ′1 =
[m∗1, m

′
1)
′
1 = [m′1, m

′
1)
′
1 contains but the single edge j′1. In particular

j∗1 = j′1. But (5.3) asserts j′1 = j∗2 . Together, we conclude the leading
edge property (ii) of γρ = γρ2 because j∗ = j∗1 = j′1 = j∗2 and because (5.9)
holds for γρ2 .

Termination property (iii) is identically true for γ0 and γ0
2 . For γ′ it fol-

lows from γ′2 because (5.3) asserts j′ = j′2. Nonintersection property (iv)
holds, identically, for γρ and γρ2 . This settles case 1.
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Case 2: At least one of the verticesm∗1, m
∗
2, m

′
2 is 0.

Consider any feed reaction j0 ∈ E, i.e. the mother vertex m0:= m(j0)
satisfies m0 = 0. Then rj0 is a constant parameter and hence rj0m = 0
for all m ∈M; see (1.3). Therefore definition (1.14) of the flux response
implies

(5.10) Φj0j = δj0j

for all j ∈ E.

Now consider the casem′2 = 0, with child edge j′2: m
′
2 → m′2. Then (5.10)

with j0:= j′2, j:= j∗2 and assumption (5.1) imply δj′2j∗2 = Φj′2j
∗
2
6= 0, i.e.

we are in the trivial case j′2 = j∗2 excluded in 5.2. It therefore remains
to consider the cases m1

∗ = 0 and m∗2 = 0.

Next suppose m∗2 = 0. Since m∗2 is the mother of j∗2 and assertion (5.3)
implies j∗2 = j′1 we can invoke (5.10) with j0:= j∗2 , j:= j∗1 . Assump-
tion (5.1) then yields δj∗2 j∗1 = Φj∗2 j

∗
1
6= 0, i.e. j∗1 = j∗2 , which has trivially

been excluded in (5.2).

In the remaining case m∗ = m∗1 = 0, we first recall theorem 1.2. Since
we have to take the trivial path γ0 = {m∗}, we see that

(5.11) Φj′j∗ 6= 0

algebraically if, and only if, there exists a di-path γ′ from m∗ = 0 with
leading edge j∗ and terminating with edge j′. For Φj∗2 j

∗
1
6= 0 we are

given such a di-path γ′1 from m∗ = 0 to j′1 = j∗2 . Since Φj′2j
∗
2
6= 0 we

are also given a di-path γ′2 from m∗2 = m′1 = m(j′1) to the edge j′ = j′2:
m′2 → m′2; see (5.3). Let γ′ be defined as the concatenation di-path

(5.12) [m∗, m′1]
′
1 [m∗2, m

′
2)
′
2

with shared vertex m′1 = m∗2 and all intermediate loops removed. Then
(5.3), (5.11) imply Φj′2j

∗
1

= Φj′j∗ 6= 0 algebraically, as claimed in (5.1).
This settles the case m∗1 = 0.

5.3 Cut-pairs and di-paths

To complete the proof of transitivity theorem 1.3, in the general case, two tasks
remain. Given general di-paths γ0

i and γ′i with properties (i) – (iv) of theo-
rem 1.2, for i = 1, 2, we have to construct a cut-pair {µ0, µ′} of vertices with
properties (5.7) (a) – (c). In a second step we have to show that the di-paths γ0

and γ′ defined in (5.8) also satisfy properties (i) – (iv) of theorem 1.2.

We show the existence of a cut-pair {µ0, µ′} for the paths γ1 = γ0
1 ∪ γ′1 and

γ2 = γ0
2 ∪ γ′2 as follows. First we color all vertices m of γ1 ∩ γ2 black or white;
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see (5.4) – (5.5). We exclude the cases where zero vertices m∗1, m
∗
2, or m′2 arise

and cyclic paths γci may occur. We also exclude the only case of (5.6) where m∗2
might be white. These cases have already been treated in 5.2. Therefore m2

∗ is
colored black and 0 ∈ γ0

1 ∩ γ0
2 is colored white. We construct the cut-pair {µ0, µ′}

from a pair of candidates µρ2 ∈ γ
ρ
2 , ρ ∈ {0, ′}, by an iterative process. We start

with µ0
2:= 0 ∈ γ0

1 ∩ γ0
2 , white, and with µ′2 as the rightmost colored vertex on γ′2.

Since m∗2 = m′1 ∈ γ′1 ∩ γ′2 is black, µ′2 indeed exists. Two cases arise.

Case 1: µ0
2 and µ′2 are both white.

Let µρ2 denote the earlier of the two vertices µ0
2 and µ′2 on γ0

1 . We
then discard all vertices of γ0

1 which occur strictly later than µρ2 on γ0
1 ,

including the other vertex µσ2 of µ0
2, µ

′
2 defined by σ 6= ρ. Note µρ2 ∈ γ

ρ
2 \

{m∗2} is still white. Define a new vertex µσ2 to be the rightmost colored
vertex, on the other branch γσ2 of γ2 which has remained on γσ2 after the
above removal of some white vertices. If µσ2 is still white, reiterate the
above strict removal process of white vertices, with {µ0

2, µ
′
2}:= {µ

ρ
2, µ

σ
2},

until case 2 occurs.

Case 2: µ0
2 and µ′2 are of opposite color.

Note that this case has to occur eventually, because the vertex 0 ∈ γ0
2

is white and {m∗2} = γ0
2 ∩ γ′2 is black. When case 2 first occurs we

terminate the iteration and define the cut-pair set

(5.13) {µ0, µ′} := {µρ2, µσ2} .

Actually, we still have to show that the cut-pair properties (5.7) hold with this
definition. Property (5.7) (a) of opposite branches holds because ρ 6= σ. Prop-
erty (5.7) (b) of opposite colors holds by termination at case 2. Ordering prop-
erty (5.7) (c) holds because we only have removed all later white vertices, in
case 1, and have always chosen the rightmost remaining vertex µσ2 . This proves
that (5.13) defines a cut-pair {µ0, µ′}.

To complete the proof of transitivity theorem 1.3 it now remains to show that
the di-walks γ0 and γ′, defined by concatenation (5.8) at the cut-pair {µ0, µ′},
satisfy properties (i) – (iv) of theorem 1.2; see fig. 1.1. We also have to show that
the walks γ0, γ′ are paths, i.e. are without self-intersections.

Emanation property (i) is immediate because γ0 and γ′ both start from m∗ = m∗1,
see (5.3), (5.8). Termination property (iii) is immediate, likewise, by construc-
tion (5.8) and because (5.3) asserts j′ = j′2. We address intersections (iv) and
self-intersections of γ0, γ′ next, and finish with property (ii) on the leading edge
j∗ = j∗1 thereafter.
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Nonintersection property (iv) follows from the same property for each of the pairs
γ0
i , γ

′
i and properties (5.7) of the cut-pair µ0, µ′. Indeed (iv) for γ0

i , γ
′
i and i = 1, 2

implies

(5.14) {m∗1} ⊆ [m∗1, µ
0]c

0

1 ∩ [m∗1, µ
′]c
′

1 ⊆ γ0
1 ∩ γ′1 = {m∗1}

because the colors c0, c′ of µ0, µ′ are opposite. Similarly µ0 6= µ′ and µρ ∈ γρ2
imply

(5.15) [µ0, 0]02 ∩ [µ′, m′2)
′
2 ⊆ (γ0

2 ∩ γ′2) \ {m∗2} = ∅ .

We consider any diagonal intersection vertex

(5.16) m ∈ [m∗1, µ
0]c

0

1 ∩ [µ′, m′2)
′
2

next. Since µ′ and µ0 have opposite color, c0:= c(µ0) implies µ′ 6∈ γc01 . Therefore
any intersection vertex m ∈ [µ′, m′2)

′
2 ∩ γc

0

1 must lie strictly to the right of µ′

on γ′2. Of course µ0 ∈ γ0
2 cannot occur on γ′2 except as the leftmost point µ∗2.

Hence m must occur strictly later than µ0 on γc
0

1 by cut-pair property (5.7) (c).
This proves that the intersection (5.16) is empty. A precisely analogous argument
shows [m∗1, µ

′]c
′

1 ∩ [µ0, 0]02 = ∅. This proves nonintersection property (iv) of the
paths γ0, γ′ constructed in (5.8).

We show next that the di-walks γ0, γ′ defined in (5.8) by concatenation of di-
paths at the cut-pair {µ0, µ′} are actually di-paths. For γ0 we have to show that
the intersection

(5.17) [m∗1, µ
0]c

0

1 ∩ [µ0, 0]02 = {µ0}

consists of the concatenation point µ0, only. Similarly to (5.16), suppose there
exists any other intersection vertex m 6= µ0 in the intersection. Then m ∈
(µ0, 0]02 lies strictly to the right of cut-vertex µ0 on γ0

2 . Cut-pair property (5.7) (c)
then implies m ∈ [m∗1, µ

0]c
0

1 ⊆ γc
0

1 ⊆ γ1 occurs strictly later than µ0 on γ1

– a contradiction. This proves claim (5.17). The analogous argument on γ′2
establishes [m∗1, µ

′]c
′

1 ∩ [µ′, m′2)
′
2 = {µ′}. This shows that γ0, γ′ are di-paths.

Property (ii), that one of the paths γ0, γ′ contains the starting edge j∗ = j∗1 , is
immediate from the same property for the di-paths γ0

1 , γ
′
1, unless the cut-vertex

µρ coincides with the colored vertex m∗1 ∈ γρ2 . Let cρ:= c(µρ) denote the color
of µρ = m∗1. Let σ 6= ρ. Then µσ 6= µρ = m∗1 is the other cut-vertex, and is
of the opposite color cσ:= c(µσ) 6= cρ. By definition (5.4) – (5.5) of the color
cρ of µρ = m∗1, the edge j∗1 emanating from m∗1 is the first edge of γc

σ

1 . But by
definition (5.8), the path γσ contains the piece [m∗1, µ

σ]c
σ

1 and hence, by µσ 6= m1
∗,

the first edge j∗1 = j∗. This proves the leading edge property (ii) for γσ. It also
completes the proof of theorem 1.3 via theorem 1.2. ./

27



6 Proof of theorem 1.1: concentration response

Our proof of theorem 1.1 on the concentration response to a perturbation of j∗

uses theorem 1.2 on the flux response, which was proved in section 3 above. Fix
any metabolite m ∈M. We distinguish two cases for the concentration response
δx∗m of the metabolite m to a rate perturbation of reaction j∗ ∈ E. Because
we have assumed det A 6= 0, algebraically, the vertex m ∈ M possesses a child
reaction j′:= J(m) by the child selection map J ; see (2.21) and corollary 2.4. In
subsection 6.1 we assume j′ 6= j∗. Subsection 6.2, in contrast, considers the case
where j′ = j∗ is the only child of m. This covers all cases.

6.1 The case m = m(j′), j′ 6= j∗.

In this case the flux-concentration relation (1.14) reads

(6.1) Φj′j∗ = rj′mδx
∗
m

with rj′m 6= 0, algebraically. Therefore, algebraically, a nonzero concentration
response δx∗m 6= 0 is equivalent to a nonzero flux response Φj′j∗ 6= 0. Theorem 1.2,
equivalently, provides us with paths γ0 and γ′ which satisfy properties (i) – (iv),
there. We have already observed how the paths γm of theorem 1.1 and γ′ of
theorem 1.2 only differ by appending/removing the final edge j′ of γ′. In the
notation of section 5 we therefore define γm:= [m∗, m]′ by omission of j′ from
γ′. We keep γ0:= [m∗, 0]0. Then γ0, γm satisfy the property list (i) – (iv) of
theorem 1.1, equivalently to δx∗m 6= 0. Therefore (6.1) and theorem 1.2 imply
theorem 1.1.

6.2 The case when j′ = j∗ is the single child of m = m(j′) = m∗.

In this case we have already observed in (1.19) that

(6.2) δx∗m = −1/rj∗m 6= 0

for m = m(j′) = m(j∗) = m∗. With the trivial path γm:= {m∗}, the state-
ments (i) – (iv) of theorem 1.1 hold true, directly. Indeed lemma 2.3 asserts the
existence of a di-path γ0 from m∗ to 0, under our standing regularity assump-
tion (1.6) that det fx = det SR 6= 0. Evidently the di-path γ0 contains the single
child edge j∗ emanating from m∗. By construction, therefore, the paths γ0, γm

satisfy all properties (i) – (iv) required in theorem 1.1. This completes the proof
of theorem 1.1. ./
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Figure 7.1: Left: the monomolecular chain Γ of 3 metabolites M = {A, B, C}
and 4 reactions E = {1, 2, 3, 4}. Right: the flux influence graph F (Γ). Only
the feed reaction 1 influences all fluxes, including itself. The other reactions are
without any influence.

7 Examples

In this section we review the monomolecular examples of the companion pa-
per [MoFi14] on structural sensitivity analysis, from a flux transitivity point of
view. We also discuss several tetrahedral di-graphs on four metabolites with
single feed and exit reactions from/to vertex 0. All examples satisfy the regular-
ity condition (1.6), algebraically, as is easily checked via the exit paths γ0 to 0
recommended in lemma 2.3; see (2.20).

We present each example, first, as a network graph Γ = (M ∪ {0}, E). We
label vertices by metabolites A, B, C, . . . ∈ M and the zero-complex 0. We
label the directed reaction arrows by positive integers 1, 2, 3, . . . ∈ E. Next
to the network graph Γ we indicate the flux influence graph F (Γ), with the
flux components as vertices and flux influences as arrows. Flux components are
denoted in braces {j1, j2, . . . } with the exception of singletons j∗. We use the
notation {j∗} to indicate true self-loops Φj∗j∗ 6= 0, i.e. nonzero self-influence
j∗ ; j∗. In case Φj∗j∗ = 0 we omit the braces. This notation facilitates the
determination of the influence sets I(j∗) of (1.26) from the influence graph F (Γ).
In each example we sketch the bare-handed derivation of the flux influence graph
F (Γ) and comment on some peculiarities. All examples illustrate the 2-edge-
connectedness of nonempty flux influence sets I(j∗); see corollary 4.3. We also
comment on the trichotomy of flux cyclicity; see theorem 4.2. For the closely
related concentration response, which is the main concern in experiments, we
refer back to section 6 and theorem 1.1.
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Figure 7.2: Left: a monomolecular single di-cycle of 4 metabolites M =
{A, B, C, D} with 6 reactions E = {1, . . . , 6}. Right: the flux influence graph
F (Γ).

Our first example is the monomolecular chain of fig. 7.1. Any reaction edge j∗

other than the feed 1 is a single child of a mother vertex m = m(j∗) ∈ M.
Therefore Φj′j∗ = 0 for j∗ 6= 1 and all j′; see (1.18). The feed case j∗ = 1, m∗ = 0
has been discussed in section 5.2, case 2. Specifically (5.11) implies Φj′1 6= 0 for all
j′ ∈ E, because any edge j′ is reachable from the leading edge j∗ = 1 by a di-path
γ′. This proves the flux influence graph F (Γ) shown in fig. 7.1. The extension to
a monomolecular chain with any finite number of metabolites is straightforward,
without further calculation. This example illustrates case (ii) of theorem 4.2, in
the special case m∗ = 0 and γ0 = {m∗}. See fig. 4.1.

Our second example Γ is the monomolecular single di-cycle A
2−→ B

3−→ C
4−→ D

5−→
A with feed 1 to A and exit 6 from C. See figure 7.2. The single child reactions
2, 3, 5 appear at the bottom level of zero influence in the flux influence graph
F (Γ).

The entire di-cycle is driven by j∗ = 4 and path γ0 = {C 6−→ 0}. In fact an
admissible path γ′, in the sense of properties (i) – (iv) of theorem 1.2, can reach

any edge j′ in the cycle, from m∗ = C, and no other edge. Indeed γ0: C
6−→ 0 is

the closed edge 6 including the two end points m∗ = C and 0. The path γ′ from
m∗ = C to j′ = 3 terminates at the open edge j′ and hence does not intersect γ0

at C. This complies with disjointness property (iv) of theorem 1.2. Edge j∗ = 6
from m∗ = C requires the same exit path γ0 and hence influences the same other
edges of the cycle, but not itself. The single feed 1 influences all edges including
itself, as before. All three examples illustrate case (ii) of theorem 4.2, again.
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Example 3, of figure 7.3, is a variant of figure 7.2 where only the directions of
reactions 4, 5 have been reversed. This splits the central di-cycle into a bi-cycle

with two parallel arcs A
2−→ B

3−→ C and A
5−→ D

4−→ C. The single child reactions
become 3, 4, 6. Each of the arc entries 2 and 5, separately, now influences both
arcs, but not the shared exit 6 ⊆ γ0. This illustrates case (iii) of theorem 4.2;
see also fig. 4.1. As usual the influence of the single feed 1 remains global, by
case (ii) with m∗ = 0 and γ0 = {m∗}.

Example 4, of figure 7.4, features two overlapping di-cycles (a): B
3−→ C

4−→ D
8−→

F
9−→ B, and (b): A

2−→ B
3−→ C

6−→ E
7−→ A. As before, single children 2, 3, 7, 9

exert no influence, whereas the influence of the single feed 1 is global.

Let us consider the influence of j∗ = 6, m∗ = C, next. By the unique exit di-path

γ0: C
4−→ D

5−→ 0, the edge j∗ = 6 activates the whole di-cycle (b) via a di-path
γ′. Because γ0 is unique, however, the leading edge j∗ = 6 cannot influence any
other edges. Swapping the perturbed edge j∗ from γ′ to become the leading edge
j∗ = 4 of the exit path γ0, instead, produces the same influence set

(7.1) I(4) = I(6) = {2, 3, 7, 6} = (b)

which spans the full di-cycle (b). This illustrates cases (ii) and (i) of theorem 4.2
on di-cycle influence, respectively.
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Figure 7.3: Left: monomolecular branching network Γ. The network coincides
with fig. 7.2, except for the reversed directions of reactions 4, 5 ∈ E. The central
di-cycle becomes a nonoriented cycle with two parallel forward branches 2, 3 and
5, 4 emanating from metabolite A and joining at C. Right: the flux influence
graph F (Γ) changes drastically, compared to fig. 7.2.
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Figure 7.4: Left: a monomolecular network Γ of two overlapping di-cycles with
6 metabolites M = {A, . . . , F} and 9 reactions E = {1, . . . , 9}. Right: the
flux influence graph F (Γ). Note the global influence of single feed 1, and the
absent influence of single children 2, 3, 7, 9. The branching pairs 5, 8 and 4, 6,
respectively, share the same influence sets.

The influence sets I(5) = I(8) of the two outgoing reactions 5 and 8 of m∗ = D
are also identical a priori, by swapping of j∗. Let us therefore consider j∗ = 5,
without loss of generality. The only possible exit di-path γ0 from m∗ = D is the

closed edge γ0: D
5−→ 0. Again the other path γ′ from m∗ = D with leading edge

8 can traverse the whole di-cycle (a) to which 8 belongs. See theorem 4.2, (i).
The forward branching 4, 6 at metabolite vertex C in di-cycle (a), however, also
opens access to the whole di-cycle (b) via reaction arrow 6. Again this illustrates
theorem 4.2, (i), and shows that the influence sets

(7.2) I(5) = I(8) = {2, 3, 4, 6, 7, 8, 9} = (a) ∪ (b)

span both di-cycles (a) and (b).

It is an amusing and highly recommended exercise to revert one or both orienta-
tions of the reaction branch 6, 7 and of the pair 8, 9, independently. The arising
three cases of mixed di-cycles and branching are left to the reader.

Instead we consider the four metabolic networks Γ of fig. 7.5, (I) – (IV). They
feature the complete graph of 4 vertices M = {A, B, C, D} and 6 reactions
1, . . . , 6. Up to isomorphism, there is only one irreversible orientation with a 4-
element di-cycle, and one without; see cases I – III, and IV, respectively. We then
choose various single feeds 1 and single exits 8 such that regularity condition (1.6)
holds in the guise of lemma 2.3 and (2.20).
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As always, the single feed 1 exerts global influence, and the single children exert
none. In examples I and II, all other mothers have out-degree 2, so that swapping
of j∗ between the two outgoing edges produces identical results. In example I this
applies to the outgoing edge pairs j∗ ∈ {3, 6}, {4, 7}, and {5, 8}; example II has
the pairs {2, 8}, {3, 6}, {4, 7} instead.

Consider example I, j∗ = 6 with m∗ = A. The exit di-path γ0: m∗ = A
6−→ C

8−→ 0
is possible and makes edges j′ = 3, 4, 7, 2, only, accessible to the complementary
paths γ′. See case (iii) of theorem 4.2 for the bi-cycle of j∗ = 6 with j′ = 3, 4.
See case (i) for the di-cycle j′ = 3, 7, 2. Choosing the other exit di-path γ0:

m∗ = A
3−→ B

4−→ C
8−→ 0 with leading edge 3 makes edge j′ = j∗ = 6 accessible to

γ′, only. See theorem 4.2, (iii). This establishes the influence sets

(7.3) I(3) = I(6) = {2, 3, 4, 6, 7} .
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Figure 7.5: Four examples I – IV of monomolecular metabolic networks Γ with
a complete irreversible di-graph on 4 metabolites M = {A, B, C, D} with 8 re-
actions E = {1, . . . , 8} and varying positions of single feed 1 and single exit 8.

Examples I – III feature a 4-element di-cycle A
3−→ B

4−→ C
5−→ D

2−→ A, whereas
example IV does not. The flux influence graphs F (Γ) are specified to the right of
each metabolic network Γ.
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The arguments for I(4) = I(7) = I(3) are similar and are omitted.

Consider example I, j∗ = 8, m∗ = C next. This forces γ0: m∗ = C
8−→ 0 as the

only exit path. The complementary path γ′ can then roam all over the tetrahedral
edges 2, . . . , 7, only. All cases belong to class (i) of theorem 4.2. This proves

(7.4) I(5) = I(8) = {2, . . . , 7}
and establishes the flux influence graph F (Γ) of example I. We omit the rather
analogous considerations which derive F (Γ) in example II.

In example III we encounter out-degree 2 at vertex A and out-degree 3 at B.
This allows swapping of j∗ ∈ {3, 6} at A, and proves I(3) = I(6). We also note
that any exit di-path γ0 from any metabolite m∗ must follow the sequence

(7.5) C
5−→ D

2−→ A
3−→ B

8−→ 0

from vertex m∗ on. This seriously restricts the choices of the complementary
paths γ′ from m∗, and allows us to determine the influence sets I(j∗) easily, via
the mother vertex m∗ = m(j∗):

(7.6)

j∗ = 3, 6 ; m∗ = A ; I(3) = I(6) = {2, 5 , 6}
j∗ = 4 ; m∗ = B ; I(4) = {2, . . . , 7} \ {7}
j∗ = 7 ; m∗ = B ; I(7) = {2, . . . , 7} \ {4}
j∗ = 8 ; m∗ = B; I(8) = {2, . . . , 7} .

For m∗ = B we have used that property (iii) of theorem 1.2 and (7.5) force j∗

to be the leading edge of γ′ in cases j∗ = 4, 7, but not 8. The cases j∗ = 4, 7
illustrate theorem 4.2, (ii). Here j∗ ∈ I(j∗) but the other out-edge of m∗ = B is
not influenced. For j∗ = 8 ∈ γ0 the paths γ′ roam all over the tetrahedral edges
2, . . . , 7 freely. This illustrates theorem 4.2, (i) and establishes the flux influence
graph F (Γ) of example III. The analogous details of example IV are left to the
reader as a final exercise.

References

[Fe95] M. Feinberg. The Existence and Uniqueness of Steady States for a
Class of Chemical Reaction Networks. Arch. Rational Mech. Analysis
132 (1995), 311–370.

[Ishetal07] N. Ishii et al.. Multiple High-throughput analyses monitor the re-
sponse of E. coli to perturbations. Science 316 (2007), 593–597.

[MoFi14] A. Mochizuki and B. Fiedler. Sensitivity of Chemical Reaction
Networks: A Structural Approach. 1. Examples and the Carbon
Metabolic Network. J. Theor. Biol., to appear 2014.

[ShFe13] G. Shinar and M. Feinberg. Concordant chemical reaction networks
and the Species-Reaction Graph. Math. Biosciences 241 (2013), 1–23.

34


